ESG Series - Environmental Part 4: Energy, Electricity and Emissions

Learning Outcomes

In this piece, we will discuss the relationship between energy, electricity and emissions, and why the distinction is necessary to make. We will show Bitcoin’s current electricity mix, and what that means in regards to energy use and emissions in a global context. The key topics of this piece include:

  • World energy, electricity and emissions statistics, and how Bitcoin compares
  • The differences between energy, electricity and emissions
  • Different electricity generation methods and their emissions
  • Bitcoin’s electricity mix pre-and-post China ban
  • The difference between greenhouse gas and carbon dioxide emissions
  • “Carbon Offsetting” with Bitcoin Mining


As was highlighted in the introduction to this series, all electrical energy starts its life as “primary energy”, i.e., a ray of sunlight, gust of wind, drop of oil, or lump of coal. Depending on the particular fuel source and generation method, greenhouse gas emissions (GHGs) such as carbon dioxide or methane, are released into the atmosphere as a byproduct. The amount of GHGs (measured in grams of Carbon-Dioxide Equivalents (g CO2eq)) emitted per kilowatt-hour (kWh) of electricity generated is known as carbon intensity (CO2eq/kWh). The International Panel on Climate Change (IPCC) has collected data on carbon intensity to demonstrate the difference between technologies, as is shown in Figure 1 below.

Of relevance to note in the Table is the 50th-%ile scores for all technologies, where there is a clear difference between green technologies and fossil fuels. Of interest to note is that best-in-class Carbon Capture & Storage (CCS) fossil fuel plants are comparable to worst-in-class solar Photovoltaic (PV). This is the level of carbon intensity variation found in generation methods around the world.

ESG_Series_Environmental_Part_4_Energy_Electricity_and_Emissions-IPCC Data on Carbon Intensity.png

Figure 1 - IPCC Data on Carbon Intensity of Various Generation Types

Bitcoin’s Electricity Mix & Use

On energy mix, we look to Cambridge University’s data which provides robust Pre-China information. In the turmoil of the Chinese Ban, The Bitcoin Mining Council, which currently represents almost 50% of the network hash rate, presented as a robust secondary source to fill data gaps post-migration. Data on world energy and grids is obtained from Oxford University’s Our World in Data.,

The figure below aggregates data from the two aforementioned sources, and presents them in a table. There you will see the world average’s primary energy and grid mixes by generation technology, as well as Bitcoin’s energy mix pre-and-post China Migration. Data on the “% sustainable technologies” as well as carbon intensity are shown at the bottom. It is clear that Bitcoin outperforms the world average figures.

Electricity Generation MethodWorld Primary Energy Mix (2020)World Grid Mix (2020)Bitcoin Mix (Pre-China Ban)Bitcoin Mix (Post-China Ban)
Other Renewables7.1%2.7%0.0%0.0%
Total % Sustainable**21.1%39.1%49.00%57.70%

Figure 2 - Bitcoin’s Energy Mix Compared to the rest of The World. ** Sustainable includes all renewables + hydroelectric + nuclear

Bitcoin’s Energy Use

Earlier in this series, we calculated how much electricity Bitcoin uses by multiplying the average miner efficiency with the network hashrate, resulting in 15.3GW of power draw, the equivalent of 133.8 TWh per year (about 0.5% of the 26,290TWh of electricity produced by the world annually). Now that we understand Bitcoin’s electricity use and generation mix, we can calculate total energy use.

Every time primary energy is converted into electrical energy, some energy goes to waste. Using well established conversion factors, we can work backwards and calculate the primary energy required to produce electricity., Conversion factors (CF) are defined as the proportions of primary energy that are converted to electrical energy. Hydroelectricity is highly efficient and converts 90% of energy at the turbines into electricity at the wire. Coal and oil are less efficient at a 32% conversion factor. Conversion factors of other generation methods, as well as Bitcoin’s overall conversion factor, are presented in Figure 3 below.

Energy SourceBitcoin’s Energy Mix ProportionConversion FactorEnergy Mix Proportion x Conversion Factor
Bitcoin’s Conversion Factor53.9%

Figure 3: Bitcoin’s sustainable energy mix and corresponding energy to electricity conversion ratios

Bitcoin’s energy mix implies an overall energy to electricity conversion ratio of approximately 53.9%. This means that the 133.8 TWh of electrical energy used by Bitcoin, divided by 53.9%, results in 252.5 TWh of primary energy. This is equivalent to 0.15% of the world’s primary energy supply of 173,430 TWh.

Bitcoin’s Emissions

Using the 50th-percentile figures shown in Figure 1 above, and Bitcoin’s Energy mix from Figure 2, we can quickly find Bitcoin’s carbon intensity to be 269 grams of CO2e/kWh.

Energy SourceBitcoin’s Energy Mix ProportionCarbon Intensity (g CO2e/kWh)
Bitcoin’s Carbon Intensity (g CO2e/kWh)269

Figure 4: Bitcoin’s sustainable energy mix and corresponding carbon intensity

From here, simply multiply Bitcoin’s Carbon Intensity of 269g CO2e/kWh by Bitcoin’s yearly electricity use (133.8 TWh) to get to an emissions figure of 36 megatons (MT) of Greenhouse Gases per year, or 0.07% of the world’s 49,360 MT of GHG emissions.

In the next section of this piece, we will dig into what emissions are, the difference between them and the need to account for all of them, not just carbon dioxide.

Emissions - Greenhouse Gases vs Carbon Dioxide

By definition, greenhouse gases (GHGs) capture and reflect heat back to the Earth. There are four categories of GHG, these being carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases. Therefore, similar to how electricity is a subset of energy, carbon dioxide is a subset of greenhouse gases, as shown in the figure below.

ESG_Series_Environmental_Part_4_Energy_Electricity_and_Emissions-GHG emissions by type.png

Figure 5 - GHG emissions by type

An Introduction to Methane, and its Negative Environmental Impacts

Methane is most prevalently emitted into the atmosphere through the production, processing and storage of natural gas and petroleum, which comprises 30% of total methane emissions. Methane is also emitted through landfill and coal mining, which comprise about 17% and 7% of methane emissions, respectively. Methane is the second-most prevalent GHG in the world after CO2, but has 56-times more warming potential., As such, methane emissions are an environmental issue that must be addressed.

In the oil and gas fields, methane is emitted into the environment through 2 methods; venting and flaring. Vented methane is methane immediately released straight into the atmosphere, which is suboptimal environmentally. With flaring, this vented methane is combusted and converted into to water vapour, heat, and the relatively more favourable carbon-dioxide. Whilst flaring reduces environmental impact substantially, the practice is still susceptible to heavy winds leading to incomplete combustion of the methane, resulting in some methane still being released into the environment.


Thus, reducing the amount of vented and flared methane would be instrumental in helping reduce the impacts of climate change.

How Bitcoin Currently Offsets Flared Methane

Bitcoin does not need an electric grid per se - only an energy source. Bitcoin can contribute to reducing the impacts of climate change as it can use flared methane, or any waste energy for that matter, to power the network. The most notable oil and gas corporations engaging in this scheme are ExxonMobil and ConocoPhillips, which have partnered with flared methane bitcoin mining specialist Crusoe Engineering to redirect their excess gas from being flared to being used to power bitcoin miners.

ESG_Series_Environmental_Part_4_Energy_Electricity_and_Emissions-Flared Methane.jpeg

Instead of flaring the gas, or worse, venting it, Bitcoin miners transport their equipment to an oil field with active flares, then divert the natural gas to generators that generate electricity to power the Bitcoin mining rigs. This solution mitigates the negative environmental effects from just flaring gas by up to 63%, and has significant environmental and economic benefits to oil and gas companies who can now both clean and monetize their waste through partnerships with Bitcoin miners.

Since Bitcoin can be powered by stranded energy sources across the globe, Bitcoin miners will modify their mining operations to take advantage of cheap energy of any kind or in any location given that the incentive exists.


Bitcoin has gradually shifted towards cleaner and more sustainable energy sources over time, and most importantly, shifted away from one of the dirtiest, least transparent power grids in the world in China, which has resulted in a dramatic improvement in carbon emissions. Bitcoin can continue to have a positive impact on the environment by feeding on lethal waste greenhouse gases, particularly flared methane, to reduce the amount of dangerous GHGs emitted into the atmosphere. Finally, we saw that Bitcoin uses only 0.15% of The World’s Primary Energy, 0.5% of its electricity, and contributes 0.07% of The World’s GHG emissions.

Ultimately however, the energy mix of international grids is what drives Bitcoin’s emissions, and indeed, global industry and commerce’s emissions. Therefore, the responsibility falls on world governments to take action through proper incentives and regulations so that global emissions targets are met. In the meantime, Bitcoin miners will remain on the lookout for the cheapest form of energy available to them, which is increasingly becoming green.

Important Information: This material has been delivered to you by Monochrome Asset Management Pty Ltd (ABN 80647701246), Corporate Authorised Representative (CAR No. 128 6428) of Non Correlated Capital Pty Ltd (AFSL No. 499882, ABN 99 143 882 562), and has been prepared for general information purposes only and must not be construed as investment advice or as an investment recommendation. This material does not take into account your investment objectives, financial situation or particular needs. This material does not constitute an offer or inducement to engage in an investment activity nor does it form part of any offer documentation, offer or invitation to purchase, sell or subscribe for interests in any type of investment product or service. You should read and consider any relevant offer documentation applicable to any investment product or service and consider obtaining professional investment advice tailored to your specific circumstances before making any investment decision. A copy of the relevant Information Memorandum relating to a Monochrome financial product or service may be obtained by emailing or by visiting

Past performance is not necessarily indicative of future results and no person guarantees the future performance of any strategy, the amount or timing of any return from it, that asset allocations will be met, that it will be able to be implemented and its investment strategy or that its investment objectives will be achieved. This material may contain ‘forward-looking statements’. Actual events or results or the actual performance of a Monochrome financial product or service may differ materially from those reflected or contemplated in such forward-looking statements.

This material may include data, research and other information from third party sources. Monochrome makes no guarantee that such information is accurate, complete or timely and does not provide any warranties regarding results obtained from its use. This information is subject to change at any time and no person has any responsibility to update any of the information provided in this material. Statements contained in this material that are not historical facts are based on current expectations, estimates, projections, opinions and beliefs of Monochrome. Such statements involve known and unknown risks, uncertainties and other factors, and undue reliance should not be placed thereon.

Any trademarks, logos, and service marks contained herein may be the registered and unregistered trademarks of their respective owners. This material and the information contained within it may not be reproduced, or disclosed, in whole or in part, without the prior written consent of Monochrome.

Get the latest Monochrome updates direct to your inbox.

Monochrome is now available to listen to on the go.